6 research outputs found

    On the Bayesian network based data mining framework for the choice of appropriate time scale for regional analysis of drought Hazard

    Get PDF
    Data mining has a significant role in hyrdrologic research. Among several methods of data mining, Bayesian network theory has great importance and wide applications as well. The drought indices are very useful tools for drought monitoring and forecasting. However, the multi-scaling nature of standardized type drought indices creates several problems in data analysis and reanalysis at regional level. This paper presents a novel framework of data mining for hydrological research-the Bayesian Integrated Regional Drought Time Scale (BIRDts). The mechanism of BIRDts gives effective and sufficient time scales by considering dependency/interdependency probabilities from Bayesian network algorithm. The resultant time scales are proposed for further investigation and research related to the hydrological process. Application of the proposed method consists of 46 meteorological stations of Pakistan. In this research, we have employed Standardized Precipitation Temperature Index (SPTI) drought index for 1-, 3-, 6-, 9-, 12-, 24-, and ()month time scales. Outcomes associated with this research show that the proposed method has rationale to aggregate time scales at regional level by configuring marginal posterior probability as weights in the selection process of effective drought time scales

    Characterization of regional hydrological drought using improved precipitation records under multi-auxiliary information

    Get PDF
    Drought is a complex natural hazard that has been recurrently occurred in many regions across the globe. Therefore, precise drought characterization and its regional monitoring are key challenges for advanced water management and hydrological research. In this research, we provided a novel method to improve annual average time series data for the Standardized Drought Index (SDI)-type drought monitoring tools. We proposed multi-auxiliary information-based estimation strategy that improves annual moving average/total precipitation time series records. Therefore, we incorporated a minimum and maximum temperature as auxiliary variables under multi-auxiliary regression estimator. In summary, this study propagates a new drought index named: the Precision-Weighted Standardized Precipitation Index (PWSDI). We evaluated the performance of PWSDI for 10 meteorological stations in Pakistan. We found that improved estimates of temporal precipitation time series are good candidates for modelling and monitoring hydrological drought at the regional settings under SDI procedure

    Bayesian network based procedure for regional drought monitoring:The Seasonally Combinative Regional Drought Indicator

    Get PDF
    Drought is a complex natural hazard. It occurs due to a prolonged period of deficient in rainfall amount in a certain region. Unlike other natural hazards, drought hazard has a recurrent occurrence. Therefore, comprehensive drought monitoring is essential for regional climate control and water management authorities. In this paper, we have proposed a new drought indicator: the Seasonally Combinative Regional Drought Indicator (SCRDI). The SCRDI integrates Bayesian networking theory with Standardized Precipitation Temperature Index (SPTI) at varying gauge stations in various month/seasons. Application of SCRDI is based on five gauging stations of Northern Area of Pakistan. We have found that the proposed indicator accounts the effect of climate variation within a specified territory, accurately characterizes drought by capturing seasonal dependencies in geospatial variation scenario, and reduces the large/complex data for future drought monitoring. In summary, the proposed indicator can be used for comprehensive characterization and assessment of drought at a certain region

    Enabling planetary science across light-years. Ariel Definition Study Report

    Get PDF
    Ariel, the Atmospheric Remote-sensing Infrared Exoplanet Large-survey, was adopted as the fourth medium-class mission in ESA's Cosmic Vision programme to be launched in 2029. During its 4-year mission, Ariel will study what exoplanets are made of, how they formed and how they evolve, by surveying a diverse sample of about 1000 extrasolar planets, simultaneously in visible and infrared wavelengths. It is the first mission dedicated to measuring the chemical composition and thermal structures of hundreds of transiting exoplanets, enabling planetary science far beyond the boundaries of the Solar System. The payload consists of an off-axis Cassegrain telescope (primary mirror 1100 mm x 730 mm ellipse) and two separate instruments (FGS and AIRS) covering simultaneously 0.5-7.8 micron spectral range. The satellite is best placed into an L2 orbit to maximise the thermal stability and the field of regard. The payload module is passively cooled via a series of V-Groove radiators; the detectors for the AIRS are the only items that require active cooling via an active Ne JT cooler. The Ariel payload is developed by a consortium of more than 50 institutes from 16 ESA countries, which include the UK, France, Italy, Belgium, Poland, Spain, Austria, Denmark, Ireland, Portugal, Czech Republic, Hungary, the Netherlands, Sweden, Norway, Estonia, and a NASA contribution

    Ariel: Enabling planetary science across light-years

    No full text
    Ariel Definition Study ReportAriel Definition Study Report, 147 pages. Reviewed by ESA Science Advisory Structure in November 2020. Original document available at: https://www.cosmos.esa.int/documents/1783156/3267291/Ariel_RedBook_Nov2020.pdf/Ariel, the Atmospheric Remote-sensing Infrared Exoplanet Large-survey, was adopted as the fourth medium-class mission in ESA's Cosmic Vision programme to be launched in 2029. During its 4-year mission, Ariel will study what exoplanets are made of, how they formed and how they evolve, by surveying a diverse sample of about 1000 extrasolar planets, simultaneously in visible and infrared wavelengths. It is the first mission dedicated to measuring the chemical composition and thermal structures of hundreds of transiting exoplanets, enabling planetary science far beyond the boundaries of the Solar System. The payload consists of an off-axis Cassegrain telescope (primary mirror 1100 mm x 730 mm ellipse) and two separate instruments (FGS and AIRS) covering simultaneously 0.5-7.8 micron spectral range. The satellite is best placed into an L2 orbit to maximise the thermal stability and the field of regard. The payload module is passively cooled via a series of V-Groove radiators; the detectors for the AIRS are the only items that require active cooling via an active Ne JT cooler. The Ariel payload is developed by a consortium of more than 50 institutes from 16 ESA countries, which include the UK, France, Italy, Belgium, Poland, Spain, Austria, Denmark, Ireland, Portugal, Czech Republic, Hungary, the Netherlands, Sweden, Norway, Estonia, and a NASA contribution

    Ariel: Enabling planetary science across light-years

    No full text
    Ariel, the Atmospheric Remote-sensing Infrared Exoplanet Large-survey, was adopted as the fourth medium-class mission in ESA's Cosmic Vision programme to be launched in 2029. During its 4-year mission, Ariel will study what exoplanets are made of, how they formed and how they evolve, by surveying a diverse sample of about 1000 extrasolar planets, simultaneously in visible and infrared wavelengths. It is the first mission dedicated to measuring the chemical composition and thermal structures of hundreds of transiting exoplanets, enabling planetary science far beyond the boundaries of the Solar System. The payload consists of an off-axis Cassegrain telescope (primary mirror 1100 mm x 730 mm ellipse) and two separate instruments (FGS and AIRS) covering simultaneously 0.5-7.8 micron spectral range. The satellite is best placed into an L2 orbit to maximise the thermal stability and the field of regard. The payload module is passively cooled via a series of V-Groove radiators; the detectors for the AIRS are the only items that require active cooling via an active Ne JT cooler. The Ariel payload is developed by a consortium of more than 50 institutes from 16 ESA countries, which include the UK, France, Italy, Belgium, Poland, Spain, Austria, Denmark, Ireland, Portugal, Czech Republic, Hungary, the Netherlands, Sweden, Norway, Estonia, and a NASA contribution
    corecore